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Abstract. We give explicit expressions for the singular vectors of Uq(D�) in terms of the
Poincaré–Birkhoff–Witt basis. We relate these expressions to those in terms of the simple root
vectors.

1. Introduction

Singular vectors of Verma modules appeared in the representation theory of semisimple Lie
algebras and groups, cf [1–4]. Since then singular vectors have also made a great impact
in physics and not only from the point of view of applications. In fact, the generalization
of singular vectors to other symmetry objects was made primarily in the (mathematical)
physics literature starting with the paper [5], where singular vectors of the Virasoro algebra
were crucially used. More explicit examples in this case were given in [6–10]. Further,
singular vectors were given for Kac–Moody algebras [11, 12], the conformal superalgebra
su(2, 2/n) [13], the N = 1 super-Virasoro algebras [14, 15], quantum groups [16–18], W -
algebras [19–21], the N = 2 super-Virasoro algebras [22–24], the N = 4 super-Virasoro
algebras [25] and Kac–Moody superalgebras [26, 27]. Of course, the interest of physicists in
the construction of singular (null) vectors arises mostly because of the numerous applications in,
e.g., integrable theories [5, 6, 28–32], (super)conformal field theories [5, 33, 34], (super)string
theories [35, 36], topological field theories [37] and Chern–Simons theory [38].

In this paper we consider singular vectors on Verma modules over the Drinfeld–Jimbo
quantum groups [39,40]. These are q-deformationsUq(G) of the universal enveloping algebras
U(G) of simple Lie algebras G and are called quantum groups [39], quantum universal
enveloping algebras [41,42] or just quantum algebras. This paper may be viewed as a natural
continuation of the paper [17], where were given explicit formulae for the singular vectors
of Verma modules over Uq(G) for arbitrary G corresponding to a class of positive roots of
G, which were called straight roots, and some examples corresponding to arbitrary positive
roots. Note that these results are complete only for G = A� since in this case all positive
roots are straight. The singular vectors were given only through the simple root vectors as
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in earlier work in the case q = 1, cf [43, 44]. (This basis turned out to be part of a more
general basis introduced later in the context of quantum groups, though for other reasons, by
Lusztig [45].) On the other hand, there were examples, in both the undeformed case [46] and
the q-deformed case [47–49], when it was convenient to use singular vectors in the Poincaré–
Birkhoff–Witt (PBW) basis. In particular, in [46, 47], the PBW basis was more suitable to
solve the problem of explicitly reducing the representation spaces and directly obtaining the
character formulae which give the spectrum of the unitary representations and thus are relevant
for the applications to physics. In [48, 49], it turned out that the PBW basis was helpful in
establishing a correspondence between elements in the universal enveloping algebra and the
Gel’fand-(Weyl)-Zetlin basis vectors, which are used in many applications. In principle, the
paper [18] generalizes the results of [11] (from which PBW singular vectors may be extracted)
to the quantum group case; however, the formulae are not as explicit as is necessary for the
applications.

Thus, the first result of this paper gives explicit expressions for the singular vectors of
Uq(D�) in terms of the PBW basis. The second result relates these expressions to those in
terms of the simple root vectors given. In fact, in this way we also obtain the expressions in
terms of simple root vectors for the nonstraight roots which were not given in [17] (up to some
special cases). The second result is also not known for q = 1.

2. Preliminaries

Let G be a complex simple Lie algebra with Chevalley generatorsX±
i , Hi, i = 1, . . . , � = rank

G. Then the quantum algebra Uq(G) is the q-deformation of the universal enveloping algebra
U(G) defined as the associative algebra over C with generators X±

i , Ki ≡ q
Hi

i , K−1
i ≡ q

−Hi

i

and with relations [40]

[Ki,Kj ] = 0 KiK
−1
i = K−1

i Ki = 1 KiX
±
j K

−1
i = q

±aij
i X±

j (1a)

[X+
i , X

−
j ] = δij

Ki − K−1
i

qi − q−1
i

(1b)

n∑
k=0

(−1)k
(
n

k

)
qi

(X±
i )

kX±
j (X

±
i )

n−k = 0 i �= j (1c)

where qi ≡ q(αi ,αi )/2, (aij ) = (2(αi, αj )/(αi, αi)) is the Cartan matrix of G, (·, ·) is the scalar
product of the roots normalized so that for the short roots α we have (α, α) = 2, n = 1 − aij ,
(
n

k

)
q

= [n]q!

[k]q![n − k]q!
[m]q! = [m]q[m − 1]q . . . [1]q [m]q = qm − q−m

q − q−1
. (1d)

Further we may omit the subscript q from [m]q if no confusion could arise.
The above definition is valid also when G is an affine Kac–Moody algebra [39].
We use the standard decompositions into direct sums of vector subspaces G = H ⊕

⊕β∈�Gβ = G+ ⊕ H ⊕ G−, G± = ⊕β∈�±Gβ , where H is the Cartan subalgebra spanned by the
elements Hi , � = �+ ∪ �− is the root system of G and �+ and �− are the sets of positive
and negative roots, respectively; �S will denote the set of simple roots of �. We recall that
Hj correspond to the simple roots αj of G, and if β∨ = ∑

j njα
∨
j , β∨ ≡ 2β/(β, β), then to β

corresponds Hβ = ∑
j njHj .

For the PBW basis of Uq(G) besides X±
i , K±1

i , we need also the Cartan–Weyl (CW)
generators X±

β corresponding to the nonsimple roots β ∈ �+. Naturally, we shall use uniform
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notation, so that X±
αi

≡ X±
i . The CW generators X±

β are normalized so that [16, 40, 50]

[X+
β,X

−
β ] = Kβ − K−1

β

qβ − q−1
β

qβ ≡ q(β,β)/2

Kβ ≡
∏
j

K
nj (β,β)/(αj ,αj )

j (=q
Hβ

β ).

(2)

We shall not use the fact that the algebra Uq(G) is a Hopf algebra and consequently we
shall not introduce the corresponding structure.

The highest weight modules V over Uq(G) are given by their highest weight � ∈ H∗ and
highest weight vector v0 ∈ V such that

Kiv0 = q
�i

i v0 X+
i v0 = 0 i = 1, . . . , � �i ≡ (�, α∨

i ). (3)

We start with the Verma modules V � such that V � ∼= Uq(G−) ⊗ v0. We recall several facts
from [16]. The Verma module V � is reducible if there exists a root β ∈ �+ and m ∈ N such
that

[(� + ρ, β∨) − m]qβ = 0 (4)

holds, where ρ = 1
2

∑
α∈�+ α. If q is not a root of unity then (4) is also a necessary condition

for reducibility and then it may be rewritten as 2(� + ρ, β) = m(β, β). (In that case it is
the generalization of the (necessary and sufficient) reducibility conditions for Verma modules
over finite-dimensional G [1] and affine Lie algebras [51].) For uniformity we shall write the
reducibility condition in the general form (4). If (4) holds then there exists a vector vs ∈ V �,
called a singular vector, such that vs /∈ Cv0, and

Kivs = q
�i−m(β,α∨

i )

i vs i = 1, . . . , � (5a)

X+
i vs = 0 i = 1, . . . , �. (5b)

The space Uq(G−)vs is a proper submodule of V � isomorphic to the Verma module V �−mβ =
Uq(G−)⊗ v′

0 where v′
0 is the highest-weight vector of V �−mβ ; the isomorphism being realized

by vs �→ 1 ⊗ v′
0. The singular vector is given by [16, 43, 44]:

vs = vβ,m = Pβ
m ⊗ v0 (6)

where Pβ
m is a homogeneous polynomial of weight mβ. The polynomial Pβ

m is unique up to
a nonzero multiplicative constant. The Verma module V � contains a unique proper maximal
submodule I�. Among the highest weight modules (HWMs) with highest weight � there
is a unique irreducible one, denoted by L�, i.e. L� = V �/I�. If V � is irreducible then
L� = V �. Thus further we discuss L� for which V � is reducible. If V � is reducible w.r.t. to
every simple root (and thus w.r.t. to all positive roots), then L� is a finite-dimensional HWM
over Uq(G) [52]. The representations of Uq(G) are deformations of the representations of
U(G), and the latter are obtained from the former for q → 1 [52].

In [17] the singular vectors were given only through the simple root vectors, namely

vβ,m = Pβ
m(X

−
1 , . . . , X

−
� ) ⊗ v0 (7)

so Pβ
m is a homogeneous polynomial in its variables of degrees mni , where ni ∈ Z+ originate

from β = ∑
niαi .

Another restriction of [17] is that singular vectors were given only (up to a few special
cases) for a class of positive roots of G, which were called there straight roots. In order to
introduce the latter class we first recall from [53] that every root may be expressed as the result
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of the action of an element of the Weyl group W on some simple root. More explicitly, for any
β ∈ �+ we have

β = w(αp) = sp1sp2 . . . spr (αp) (8a)

sβ = wspw
−1 = sp1 . . . spr spspr . . . sp1 (8b)

where αp is a simple root, the element w ∈ W is written in a reduced form, i.e. in terms of
the minimal possible number of the (generating W ) simple reflections si ≡ sαi , and the action
of sα , α ∈ �, on H∗ is given by sα(�) = � − (�, α∨)α. The positive root β is called a
straight root if all numbers p, p1, p2, . . . , pr in (8a) are different. Note that there may exist
different forms of (8) involving other elements w′ and αp′ ; however, this definition does not
depend on the choice of these elements. Obviously, any simple root is a straight root. Other
easy examples of straight roots are those which are sums of simple roots with coefficients not
exceeding unity, i.e. β = ∑

i niαi , with ni = 1 or 0. All straight roots of the simply laced
algebras A�, D� and E� are of this form. In what follows we shall use also the following
notation. A root γ ′ ∈ �+ is called a subroot of γ ′′ ∈ �+ if γ ′′ − γ ′ �= 0 may be expressed as
a linear combination of simple roots with non-negative coefficients.

In this paper we give explicit expressions for the singular vectors for all roots—for the
straight roots in section 2 and for the nonstraight roots in section 3.

3. Singular vectors for the straight roots

3.1. Singular vectors in PBW basis

In this paper we consider Uq(G) when the deformation parameter q is not a nontrivial root of
unity. This generic case is very important for two reasons. First, for q = 1 all formulae are
valid also for the undeformed case and formulae for the relation with [17] are new also for
q = 1. Second, the formulae for the case when q is a root of unity use the formulae for generic
q as important input as explained in [17].

Let G = D�, � � 4. Let αi, i = 1, . . . , � be the simple roots, so that (αi, αj ) = −1 if
either |i − j | = 1, i, j �= � or ij = �(� − 2) and (αi, αj ) = 2δij in other cases.

Then the positive roots are given as follows:

αij = αi + αi+1 + · · · + αj 1 � i < j � � − 2

βj = αj + αj+1 + · · · + α�−2 + α� 1 � j � � − 2
β̃j = αj + αj+1 + · · · + α�−2 + α�−1 1 � j � � − 2

β0 = α�−2 + α�−1 + α�

γj = αj + αj+1 + · · · + α�−2 + α�−1 + α� 1 � j � � − 3

γij = αi + αi+1 + · · · + 2(αj + · · · + α�−2) + α�−1 + α� 1 � i < j � � − 2.

(9)

We recall that the roots αij , βj , β̃j and β0 are positive roots of various An subalgebras. Thus,
we have to consider only the roots γj and γij . We recall from [17] that γj are straight, while
γij are not straight.

In this section we deal with the straight roots γj . Now we recall that every root γj is the
highest straight root of a D�−j+1 subalgebra of D�. This means that it is enough to give the
formula for the singular vector corresponding to the highest straight root γ1.

Further we shall need the explicit expressions for the nonsimple-root CW generators of
Uq(G). Let X±

i,j , Y±
j , Ỹ±

j , Y±
0 , Z±

j and Z±
i,j be the CW generators corresponding respectively

to the roots ±αij , ±βj , ±β̃j , ±β0, ±γj and ±γij . These generators are given recursively as
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follows (with X±
jj ≡ X±

j ):

X±
ij = ±q∓1/2(q1/2X±

i X
±
i+1,j − q−1/2X±

i+1,jX
±
i )

= ± q∓1/2(q1/2X±
i,j−1X

±
j − q−1/2X±

j X
±
i,j−1) 1 � i < j � � − 2 (10a)

Y±
j = ±q∓1/2(q1/2X±

� X
±
j,�−2 − q−1/2X±

j,�−2X
±
� )

= ± q∓1/2(q1/2X±
j Y

±
j+1 − q−1/2Y±

j+1X
±
j ) 1 � j � � − 2 (10b)

Ỹ±
j = ±q∓1/2(q1/2X±

�−1X
±
j,�−2 − q−1/2X±

j,�−2X
±
�−1)

= ± q∓1/2(q1/2X±
j Ỹ

±
j+1 − q−1/2Ỹ±

j+1X
±
j ) 1 � j � � − 2 (10c)

Y±
0 = ±q∓1/2(q1/2X±

�−1Y
±
�−2 − q−1/2Y±

�−2X
±
�−1)

= ± q∓1/2(q1/2X±
� Ỹ

±
�−2 − q−1/2Ỹ±

�−2X
±
� ) (10d)

Z±
j = ±q∓1/2(q1/2X±

j,�−3Y
±
0 − q−1/2Y±

0 X±
j,�−3)

= ± q∓1/2(q1/2X±
� Ỹ

±
j − q−1/2Ỹ±

j X
±
� )

= ± q∓1/2(q1/2X±
�−1Y

±
j − q−1/2Ỹ±

j X
±
�−1) 1 � j � � − 3 (10e)

Z±
ij = ±q∓1/2(q1/2Z±

i X
±
j,�−2 − q−1/2X±

j,�−2Z
±
i ) 1 � i < j � � − 2. (10f)

Now the PBW basis of Uq(G−) is given by the following monomials:

(X−
�−2)

a�−2(X−
�−3,�−2)

t�−3,�−2 . . . (X−
1,�−2)

t1,�−2(Ỹ−
�−2)

t̃�−2(Y−
�−2)

t�−2

×(Z−
�−3,�−2)

s�−3,�−2(Z−
�−4,�−2)

s�−4,�−2

× . . . (Z−
1,�−2)

s1,�−2(Ỹ−
�−3)

t̃�−3(Y−
�−3)

t�−3

×(Z−
�−4,�−3)

s�−4,�−3 . . . (Z−
1,�−3)

s1,�−3 . . . (Ỹ−
1 )t̃1(Y−

1 )t1(Y−
0 )t

×(Z−
�−3)

s�−3 . . . (Z−
1 )

s1(X−
� )

a� (X−
�−1)

a�−1(X−
�−3)

a�−3

×(X−
�−4,�−3)

t�−4,�−3 . . . (X−
1,�−3)

t1,�−3(X−
�−4)

a�−4

× . . . (X−
2 )

a2(X−
12)

t12(X−
1 )

a1 . (11)

These monomials are in the so-called normal order [50]. Namely, we put the simple root
vectors X−

j in the order X−
�−2, X−

� , X−
�−1, X−

�−3, . . . , X
−
2 , X−

1 . Then we put a root vector E−
α

corresponding to the nonsimple root α between the root vectors E−
β and E−

γ if α = β + γ ,
α, β, γ ∈ �+. This order is not complete but this is not a problem, since when two roots are
not ordered this means that the corresponding root vectors commute, e.g. [X−

i , X−
i−k,i+k] = 0,

and [Y−
i , Ỹ−

i ] = 0, 1 � i � � − 2.
Let us have condition (4) fulfilled for γ1, but not for any of its subroots γi, i > 1:

[(� + ρ, γ ∨
1 ) − m]q = 0 m ∈ N (12a)

[(� + ρ, γ ∨
i ) − m′]q �= 0 ∀m′ ∈ N. (12b)

(The necessity of the condition (12b) was explained in [17].) Let us denote the singular vector
corresponding to (12a) by

vγ1,m
s =

∑
T

D
γ1,m

T (X−
�−2)

a�−2(X−
�−3,�−2)

t�−3,�−2 . . . (X−
1,�−2)

t1,�−2(Ỹ−
�−2)

t̃�−2(Y−
�−2)

t�−2

×(Z−
�−3,�−2)

s�−3,�−2(X−
�−4,�−2)

s�−4,�−2 . . . (Z−
1,�−2)

s1,�−2(Ỹ−
�−3)

t̃�−3(Y−
�−3)

t�−3

×(Z−
�−4,�−3)

s�−4,�−3 . . . (Z−
1,�−3)

s1,�−3 . . . (Ỹ−
1 )t̃1(Y−

1 )t1(Y−
0 )t

×(Z−
�−3)

s�−3 . . . (Z−
1 )

s1(X−
� )

a� (X−
�−1)

a�−1(X−
�−3)

a�−3
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×(X−
�−4,�−3)

t�−4,�−3 . . . (X−
1,�−3)

t1,�−3(X−
�−4)

a�−4

× . . . (X−
2 )

a2(X−
12)

t12(X−
1 )

a1 ⊗ v0 (13)

where T denotes the set of summation variables ai, tij , sij , t̃i , ti , si , t , all of which are non-
negative integers.

The derivation now proceeds as follows. We have to impose conditions (5) with β → γ1,
vs → v

γ1,m
s . (Inequalities (12b) mean that no other conditions need to be imposed.) First we

impose conditions (5a). This restricts the linear combination to terms of weight mγ1. In our
parametrization these are the following � conditions:

ap = m −
p∑
i=1

(
(ti + t̃i + si) +

�−2∑
j=p

tij +
�−2∑

j=p+1

sij + 2
∑

1�i<j�p

sij

)
1 � p � � − 3

a� = m −
(
t +

�−2∑
i=1

ti +
�−3∑
i=1

si +
∑

1�i<j��−2

sij

)

a�−1 = m −
(
t +

�−2∑
i=1

t̃i +
�−3∑
i=1

si +
∑

1�i<j��−2

sij

)

a�−2 = m −
(
t +

�−3∑
i=1

(ti + t̃i ) +
�−3∑
i=1

(si + ti,�−2) + 2
∑

1�i<j��−2

sij

)
.

(14)

This eliminates the summation in ai in (13) and also restricts further the summation
tij , sij , t̃i , ti , si , t so that the ai in (14) would be all non-negative.

Next we impose conditions (5b). These � conditions produce � recursive relations, which
are too cumbersome and we omit them. Solving these relations fixes the coefficients Dγ1,m

T

completely and we obtain

D
γ1,m

T = D�(−1)

∑
i�j

sij

∏�−3
p=2

[ãp]!
[ap]!

[t]!
∏�−2

j=2[s1j ]![sj−1]!
∏�−2

j=1[tj ]![t̃j ]!
∏

1�i<j��−2[tij ]!

× qAq(�+ρ,a�α�+a�−1α�−1)

[m − 2t − ∑�−2
i=1 (ti + t̃i ) − 2

∑
1�i<j��−2 sij − 2

∑�−3
i=1 si − ∑�−3

i=1 ti,�−2]!

×
�−3∏
j=1

qaj (�+ρ)(Hj ) .q(�
j + j − aj + tj−1,j )

.q(�j + j + 1)
(15)

×.q(��−1 + 1 − a�−1).q(�� + 1 − a�)

.q(��−1 + 2).q(�� + 2)

D� �= 0 �r := (�, βr) with βr := α1 + · · · + αr

where

ãp = m −
p∑
i=1

(
(ti + t̃i + si) +

�−2∑
j=p+1

(tij + sij ) + 2
∑

1�i<j�p

sij

)
1 � p � � − 3

and the factor A is given by

A =
∑

1�i<j��−2

{
tij

�−4∑
p=0

tp+j−1 + sij

�−4∑
p=0

sp+j−1

}
+

∑
1�i<j��−2

s2
ij +

�−3∑
i=1

s2
i

+
∑

1�i<j��−2

t2
ij −

(
(� − 2)

∑
1�i<j��−2

tij + (� + 1)
∑

1�i<j��−2

sij + �

�−3∑
i=1

si

)
m
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+
∑

1�i<j��−2

tij

�−3∑
i=1

(ti + di) +
�−4∑
i=1

(ti + di)

�−3∑
j=1

(tj + dj )

+
�−2∑
p=1

{
tp

( p∑
j=1

tj +
∑

1�i<j��−2

sij +
�−3∑
i=1

si − (� − p)m

)

+t̃p

( p∑
j=1

t̃j +
∑

1�i<j��−2

sij +
�−3∑
i=1

si − (� − p)m

)}

+t

(
t + t�−2 + t̃�−2 +

�−3∑
i=1

si +
∑

1�i<j��−3

sij − 3m

)

+
∑

1�i<j��−3

sisj + (� − 2)
∑

1�i<j��−2

sij

�−3∑
k=1

sk

+
∑

1�i<j��−2

tij

( ∑
1�i<j��−2

sij +
�−3∑
i=1

si

)

+
∑

1�i<j��−2

(j − i)tij +
∑

1�i��−4
i<j

(� − j + 3)sij + 4s�−3,�−2

+
�−3∑
i=1

(� − i)si +
�−2∑
i=1

(� − i − 1)(ti + t̃i ) (16)

where tb := ∑�−3
k=j+1 tbk .

Finally, we explain how to obtain the singular vectors for the roots γi, i > 1 from the
above formulae. For this one has to replace � → � − i + 1, and then to shift the enumeration
of the roots, namely, to replace 1, . . . , � − i + 1 by i, . . . , �.

3.2. Relation between the two expressions for the singular vectors

Here we would like to present the relation between the expressions for the singular vectors
in the PBW basis given in (16) and in the simple root vector basis given in [17]. The latter
formula is (cf formula (16) of [17])

vγ1,m =
m∑

k1=0

. . .

m∑
k�−1=0

dk1,...,k�−1(X
−
1 )

m−k1 . . . (X−
�−3)

m−k�−3(X−
�−1)

m−k�−1

×(X−
� )

m−k�−2(X−
�−2)

m(X−
� )

k�−2(X−
�−1)

k�−1

×(X−
�−3)

k�−3 . . . (X−
1 )

k1 ⊗ v0 (17a)

dk1...k�−1 = d(−1)k1+···+k�−1

(
m

k1

)
q

. . .

(
m

k�−1

)
q

× [(� + ρ, β1)]q
[(� + ρ, β1) − k1]q

. . .
[(� + ρ, β�−3)]q

[(� + ρ, β�−3) − k�−3]q

× [(� + ρ, α�)]q
[(� + ρ, α�) − k�−2]q

[(� + ρ, α�−1)]q
[(� + ρ, α�−1) − k�−1]q

= d(−1)k1+···+k�−1

(
m

k1

)
q

. . .

(
m

k�−1

)
q
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× [�1 + 1]q
[�1 − k1]q

. . .
[��−3 + � − 3]q
[��−3 − k�−3]q

× [�� + 1]q
[�� − k�−2]q

[��−1 + 1]q
[��−1 − k�−1]q

d �= 0 (17b)

where �s = (�, αs).
The D-coefficients are given in term of the d-coefficients by the following formula:

D
γ1,m

T =
∏�−3

p=2
[ãp]!
[ap]!

[t]!
∏�−2

j=2[s1j ]![sj−1]!
∏�−2

j=1[tj ]![t̃j ]!
∏

1�i<j��−2[tij ]!

× (−1)
∑�

i=1 ai qA

[m − 2t − ∑�−2
i=1 (ti + t̃i ) − 2

∑
1�i<j��−2 sij − 2

∑�−3
i=1 si − ∑�−3

i=1 ti,�−2]!

×
∑

k1,k2,...,k�−1

dk1,k2,...,k�−1

�−3∏
p=1

[m − kp]!qkp(ap−tp−1,p)

[ap − tp−1,r − kp]!

× [m − k�−1]!

[a�−1 − k�−1]!

[m − k�−2]!

[a� − k�−2]!
q(k�−1a�−1+k�−2a�) (18)

where 0 � kp � ap, 0 � p � � − 3, k�−1 � a�−1 and k�−2 � a�.
To prove the above one can use the formula (following from (1c) and (10)):

V m Un

[m]![n]!
=

∑
0�p�min(m,n)

(−1)pq(m−p)(n−p)+p Un−p Wp V m−p

[n − p]![p]![m − p]!
(19)

where the triples U,V,W are given as follows: as W runs over the vectors defined in (10),
then U,V run over the pairs which appear on the corresponding RHS, e.g. if W = X−

ij then
either (U, V ) = (X−

i , X
−
i+1,j ) or (U, V ) = (X−

i,j−1, X
−
j ).

4. Singular vectors for the nonstraight roots

4.1. Singular vectors in the PBW basis

The nonstraight roots of D� are given in (9). We shall also write them as

γrp =
�∑

j=r

njαj 1 � r < p � � − 2

nj =




1 for r � j < p

2 for p � j � � − 2

1 for j = � − 1, �.

(20)

As in the case of straight roots we can use the fact that every root γrp can be treated as the root
γ1p of a D�−r+1 subalgebra of D�. This means that it would be enough to give the formula
for the singular vector corresponding to the roots γ1p. However, we shall not do this for these
roots, since in any case it is not reduced to a single root.

Let us have condition (4) fulfilled for γrp, but not for any of its subroots. The singular
vectors corresponding to these roots are given by

v
γrp,m
s =

∑
T

D
γrp,m

T (X−
�−2)

2m−b�−2(X−
�−3,�−2)

t�−3,�−2 . . . (X−
r,�−2)

tr,�−2(Ỹ−
�−2)

t̃�−2(Y−
�−2)

t�−2

×(Z−
�−3,�−2)

s�−3,�−2(X−
�−4,�−2)

s�−4,�−2 . . . (Z−
r,�−2)

sr,�−2(Ỹ−
�−3)

t̃�−3(Y−
�−3)

t�−3
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×(Z−
�−4,�−3)

s�−4,�−3 . . . (Z−
r,�−3)

sr,�−3 . . . (Ỹ−
r )

t̃r (Y−
r )

tr (Y−
0 )t

×(Z−
�−3)

s�−3 . . . (Z−
r )

sr (X−
� )

m−b� (X−
�−1)

m−b�−1(X−
�−3)

mn�−3−b�−3

×(X−
�−4,�−3)

t�−4,�−3 . . . (X−
r,�−3)

tr,�−3(X−
�−4)

mn�−4−b�−4

× . . . (X−
r+1)

mnr+1−br+1(X−
r,r+1)

tr,r+1(X−
r )

m−br ⊗ v0. (21)

In (21) we have already imposed conditions (5a) and the summation is only over those elements
of the PBW basis which have the weight mγrp. Further we impose (5b), the procedure being
as in the case of the straight roots. Thus, the coefficients D

γrp,m

T are found to be

D
γrp,m

T = Dns(−1)

∑
r�j

sij
∏�−3

s=r+1
[mns−b̃s ]!
[mns−bs ]!

[t]!
∏�−2

j=r+1[srj ]![sj−1]!
∏�−2

j=r [tj ]![t̃j ]!
∏

r�i<j��−2[tij ]!

× qAns

q(�+ρ,b�α�+b�−1α�−1)

[2m − 2t − ∑�−2
i=r (ti + t̃i ) − 2

∑
r�i<j��−2 sij − 2

∑�−3
i=r si − ∑�−3

i=r ti,�−2]!

×
�−3∏
j=r

q(mnj−bj�
′j ) .q(�

′j − mnj + bj + tj−1,j )

.q(�j + 1)

×.q(��−1 + 1 − m + b�−1).q(�� + 1 − m + b�)

.q(��−1 + 2).q(�� + 2)

�′j :=
j∑
i=r

ni(�i + 1) Dns �= 0 (22)

where we have set for r � p � � − 3

b̃p =
p∑
i=r

(
(ti + t̃i + si) +

�−2∑
j=p+1

(tij + sij ) + 2
∑

r�i<j�p

sij

)

bp =
p∑
i=r

(
(ti + t̃i + si) +

�−2∑
j=p

tij +
�−2∑

j=p+1

sij + 2
∑

1�i<j�p

sij

)

b� = t +
�−2∑
i=r

ti +
�−3∑
i=r

si +
∑

r�i�<j��−2

sij

b�−1 = t +
�−2∑
i=r

t̃i +
�−3∑
i=r

si +
∑

r�i<j��−2

sij

b�−2 = t +
�−3∑
i=r

(ti + t̃i ) +
�−3∑
i=r

(si + ti,�−2) + 2
∑

r�i<j��−2

sij .

(23)

4.2. Singular vectors in the simple root basis

The singular vectors corresponding to the nonstraight roots, γrp, 1 � r < p � � − 2, in the
simple root basis are given by

vγrp,m =
m∑

kr=0

mnr+1∑
kr+1=0

. . .

m∑
k�−1=0

dk1,...,k�−1(X
−
r )

m−kr (X−
r+1)

mnr+1−kr+1

× . . . (X−
�−3)

2m−k�−3(X−
�−1)

m−k�−1(X−
� )

m−k�−2(X−
�−2)

2m(X−
� )

k�−2

×(X−
�−1)

k�−1(X−
�−3)

k�−3 · · · (X−
r )

kr ⊗ v0. (24)
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The coefficients d were not given in [17], but now using the PBW expression (21) for vγrp,m

we find that they are given by the following formula:

dkr ,...,k�−1 = (−1)kr+···+k�−1 ×
∑

mnr−br�kr

...
mn�−3−b�−3�k�−3

∑
m−b�−1�k�−1
m−b��k�−2

Dns

×
�−3∏
j=r

q(mnj−bj )(1−kj )−kj [mnj − bj ]!

[mnj − kj ]![mnj − b̃j ]![kj − mnj + bj ]!

× q(m−b�)(1−k�−2)−k�−2

[m − b�]![k�−2 − m − b�]![m − k�−2]!

× q(m−b�−1)(1−k�−1)−k�−1

[m − b�−1]![k�−1 − m − b�−1]![m − k�−1]!

×
[

2m − 2t −
�−2∑
i=r

(ti + t̃i ) − 2
∑

r�i<j��−2

sij − 2
�−3∑
i=r

si −
�−3∑
i=r

ti,�−2

]
!

×[t]!
�−2∏

j=r+1

[srj ]![sj−1]!
�−2∏
j=r

[tj ]![t̃j ]!
∏

r�i<j��−2

[tij ]!q−Ans

(25)

or more explicitly

dk1,...,k�−1 = dns(−1)kr+···+k�−1

(
mnr

kr

)
q

· · ·
(
mn�−1

k�−1

)
q

× [(� + ρ, βr,r )]q
[(� + ρ, βr,r ) − kr ]q

· · · [(� + ρ, βr,�−3)]q
[(� + ρ, βr,�−3) − k�−3]q

× [(� + ρ, α�)]q
[(� + ρ, α�) − k�−2]q

[(� + ρ, α�−1)]q
[(� + ρ, α�−1) − k�−1]q

= dns(−1)kr+···+k�−1

(
mnr

kr

)
q

· · ·
(
mn�−1

k�−1

)
q

× [�′r + nr ]q
[�′r + nr − k1]q

· · · [�′�−3 + n�−3]q
[�′�−3 + n�−3 − k�−3]q

× [�� + 1]q
[�� + 1 − k�−2]q

[��−1 + 1]q
[��−1 + 1 − k�−1]q

dns �= 0

βr,j :=
j∑
i=r

niαi �′j = (�, βr,j ), nj :=
j∑
i=r

ni .

(26)

In the derivation of these formulae one can use (19).
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